ChIP-Chip Designs to Interrogate the Genome of Xenopus Embryos for Transcription Factor Binding and Epigenetic Regulation
نویسندگان
چکیده
BACKGROUND Chromatin immunoprecipitation combined with genome tile path microarrays or deep sequencing can be used to study genome-wide epigenetic profiles and the transcription factor binding repertoire. Although well studied in a variety of cell lines, these genome-wide profiles have so far been little explored in vertebrate embryos. PRINCIPAL FINDINGS Here we report on two genome tile path ChIP-chip designs for interrogating the Xenopus tropicalis genome. In particular, a whole-genome microarray design was used to identify active promoters by close proximity to histone H3 lysine 4 trimethylation. A second microarray design features these experimentally derived promoter regions in addition to currently annotated 5' ends of genes. These regions truly represent promoters as shown by binding of TBP, a key transcription initiation factor. CONCLUSIONS A whole-genome and a promoter tile path microarray design was developed. Both designs can be used to study epigenetic phenomena and transcription factor binding in developing Xenopus embryos.
منابع مشابه
Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond
Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in...
متن کاملGenome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq
The recruitment of chromatin regulators and the assignment of chromatin states to specific genomic loci are pivotal to cell fate decisions and tissue and organ formation during development. Determining the locations and levels of such chromatin features in vivo will provide valuable information about the spatio-temporal regulation of genomic elements, and will support aspirations to mimic embry...
متن کاملA Widespread Distribution of Genomic CeMyoD Binding Sites Revealed and Cross Validated by ChIP-Chip and ChIP-Seq Techniques
Identifying transcription factor binding sites genome-wide using chromatin immunoprecipitation (ChIP)-based technology is becoming an increasingly important tool in addressing developmental questions. However, technical problems associated with factor abundance and suitable ChIP reagents are common obstacles to these studies in many biological systems. We have used two completely different, wid...
متن کاملInvestigating physical chromatin associations across the Xenopus genome by chromatin immunoprecipitation.
Chromatin immunoprecipitation (ChIP) combined with genomic analysis techniques provide a global snapshot of protein-DNA interactions in the context of chromatin, yielding insights into which genomic loci might be regulated by the DNA-associated protein under investigation. This protocol describes how to perform ChIP on intact or dissected Xenopus embryos. The ChIP-isolated DNA fragments are sui...
متن کاملA clustering approach for identification of enriched domains from histone modification ChIP-Seq data
MOTIVATION Chromatin states are the key to gene regulation and cell identity. Chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-Seq) is increasingly being used to map epigenetic states across genomes of diverse species. Chromatin modification profiles are frequently noisy and diffuse, spanning regions ranging from several nucleosomes to large domains of multiple...
متن کامل